Influenza virus infection of tracheal gland cells in culture

Author:

Gentry S E1,Culp D J1,Roberts N J1,Marin M G1,Simons R L1,Latchney L R1

Affiliation:

1. Department of Medicine, University of Rochester School of Medicine, New York 14642.

Abstract

Influenza virus-induced tracheobronchitis causes limited epithelial deciliation but markedly decreased mucociliary transport. This suggests that virus-induced alterations in airway mucus play a role in decreased mucociliary transport. Airway submucosal glands are a primary source of mucus. Therefore, we examined virus-gland cell interactions by exposing primary cultures of isolated feline tracheal gland cells to influenza A/Scotland/840/74 H3N2 virus for 1 h at a multiplicity of infection of 0.1. Virus production and release into the culture medium first occurred between 8 and 12 h postinfection and eventually reached a steady state that continued for at least 8 days. Virus which was produced and released by infected cells infected other monolayers, resulting in viral production similar to that after infection with stock virus. Hemadsorption assays conducted 24 h after infection demonstrated that most of the cells in a monolayer became infected. The infection was nonlytic according to cell morphology, trypan blue dye exclusion, and release of lactate dehydrogenase. Because lysis of a cell subpopulation could have been masked by subsequent cell division, we compared the uptake of [3H]thymidine by infected and control monolayers. There was no increase in uptake by infected monolayers. These results demonstrate that feline tracheal gland cells in primary culture undergo productive and nonlytic infection with influenza A virus. This model provides a unique system for the study of virus-gland interactions isolated from the influence of other tissues.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference35 articles.

1. Depression of monocyte and polymorphonuclear leukocyte oxidative metabolism and bactericidal capacity by influenza A virus;Abramson J. S.;Infect. Immun.,1982

2. Growth patterns of influenza virus in cultures of ferret organs;Basarab O.;Br. J. Exp. Pathol.,1970

3. Regulation of airway secretory cells;Basbaum C. B.;Clin. Chest Med.,1986

4. Hemadsorption focus assay for growth of influenza and parainfluenza viruses in human dermal fibroblasts;Bell D. M.;Proc. Soc. Exp. Biol. Med.,1985

5. Infection of chick embryo tracheal organ cultures with influenza A2 (Hong Kong) virus. I. Cytopathology, histopathology, immunofluorescence, hemadsorption, and titration of the released infectious progeny;Blaskovic P.;Arch. Virol.,1972

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3