Efficient transcription, not translation, is dependent on adenovirus tripartite leader sequences at late times of infection

Author:

Alonso-Caplen F V1,Katze M G1,Krug R M1

Affiliation:

1. Graduate Program in Molecular Biology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021.

Abstract

To determine whether the tripartite leader is required for efficient translation in adenovirus-infected cells at late times of infection, we constructed recombinant adenoviruses containing the influenza virus nucleocapsid protein (NP) gene expressed under the control of the adenovirus major late promoter (MLP). We chose the NP gene because previous results showed that the influenza virus NP mRNA was an extremely effective initiator of translation in cells which were superinfected with influenza virus at late times of adenovirus infection (M. G. Katze, B. M. Detjen, B. Safer, and R. M. Krug, Mol. Cell. Biol. 6:1741-1750, 1986). The NP gene in the adenovirus recombinants was inserted downstream of an MLP that replaced part of the early (E1A) region. The resulting NP mRNAs either lacked any tripartite leader sequences or contained at their 5' ends various portions of the tripartite leader: 33, 172, or all 200 nucleotides of the leader. The relative amounts of the NP protein synthesized by the recombinants were directly proportional to the amounts of the NP mRNA made, indicating that the presence of 5' tripartite leader sequences did not enhance the translation of NP mRNA. In addition, the sizes of the polysomes containing NP mRNA were not increased by the presence of tripartite leader sequences, indicating that the initiation of translation was not enhanced by these sequences. On the other hand, the presence of tripartite leader sequences immediately downstream of the MLP did enhance the transcription of the inserted NP gene, as shown by Northern (RNA) analysis of in vivo NP mRNA levels and by in vitro runoff assays with isolated nuclei. Our results indicate that more than 33 nucleotides of the first leader segment of the tripartite leader are required for optimal transcription from the MLP.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3