Effect of a Bis-Benzyl Polyamine Analogue on Pneumocystis carinii

Author:

Merali Salim1,Sarić Muhamed1,Chin Kevin1,Clarkson Allen B.1

Affiliation:

1. Department of Medical and Molecular Parasitology, New York University School of Medicine, New York, New York 10010

Abstract

ABSTRACT Pneumocystis carinii is the causative agent of P. carinii pneumonia (PCP), an opportunistic infection associated with AIDS and other immunosuppressed conditions. Although polyamine metabolism of this fungus has been shown to be a chemotherapeutic target, this metabolism has not been thoroughly investigated. Reported here is the effect of one polyamine analogue, N , N ′-bis{3-[(phenylmethyl)amino]propyl}-1,7-diaminoheptane (BBS), on P. carinii . BBS inhibits the growth of P. carinii in culture, but at concentrations higher than those required to inhibit the growth of other pathogens. However, BBS is at least as active in an animal model of PCP as in other models of diseases studied. BBS causes some reduction in P. carinii polyamine content and polyamine biosynthetic enzyme activities, but the effect is less than that observed with other pathogens and very much less than the effect of the polyamine biosynthesis inhibitor dl -α-difluoromethylornithine. BBS enters P. carinii cells via a polyamine transporter, unlike all other cells that have been studied. P. carinii cells do not remove the benzyl groups of BBS, as is reported for mammalian cells. The most likely mode of action is displacement of natural polyamines. Overall, the activity of BBS provides further evidence that polyamines and polyamine metabolism are rational targets for the development of drugs to treat PCP. Because the details of BBS- P. carinii interaction differ from those of other cells studied, polyamine analogues may provide a highly specific treatment for PCP.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3