An Escherichia coli System Expressing Human Deoxyribonucleoside Salvage Enzymes for Evaluation of Potential Antiproliferative Nucleoside Analogs

Author:

Wang Jianghai1,Neuhard Jan2,Eriksson Staffan1

Affiliation:

1. Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, The Biomedical Center, S-751 23 Uppsala, Sweden,1 and

2. Center for Enzyme Research, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark2

Abstract

ABSTRACT Deoxyribonucleoside salvage in animal cells is mainly dependent on two cytosolic enzymes, thymidine kinase (TK1) and deoxycytidine kinase (dCK), while Escherichia coli expresses only one type of deoxynucleoside kinase, i.e., TK. A bacterial whole-cell system based on genetically modified E. coli was developed in which the relevant bacterial deoxypyrimidine metabolic enzymes were mutated, and the cDNA for human dCK or TK1 under the control of the lac promoter was introduced. The TK level in extract from induced bacteria with cDNA for human TK1 was found to be 20,000-fold higher than that in the parental strain, and for the strain with human dCK, the enzyme activity was 160-fold higher. The in vivo incorporation of deoxythymidine (Thd) and deoxycytidine (dCyd) into bacterial DNA by the two recombinant strains was 20 and 40 times higher, respectively, than that of the parental cells. A number of nucleoside analogs, including cytosine arabinoside, 5-fluoro-dCyd, difluoro-dCyd, and several 5-halogenated deoxyuridine analogs, were tested with the bacterial system, as well as with human T-lymphoblast CEM cells. The results showed a close correlation between the inhibitory effects of several important cytostatic and antiviral analogs on the recombinant bacteria and the cellular system. Thus, E. coli expressing human salvage kinases is a rapid and convenient model system which may complement other screening methods in drug discovery projects.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3