Biochemical and Antiparasitic Properties of Inhibitors of the Plasmodium falciparum Calcium-Dependent Protein Kinase PfCDPK1

Author:

Ansell Keith H.,Jones Hayley M.,Whalley David,Hearn Alisdair,Taylor Debra L.,Patin Emmanuel C.,Chapman Timothy M.,Osborne Simon A.,Wallace Claire,Birchall Kristian,Large Jonathan,Bouloc Nathalie,Smiljanic-Hurley Ela,Clough Barbara,Moon Robert W.,Green Judith L.,Holder Anthony A.ORCID

Abstract

ABSTRACTPfCDPK1 is aPlasmodium falciparumcalcium-dependent protein kinase, which has been identified as a potential target for novel antimalarial chemotherapeutics. In order to further investigate the role of PfCDPK1, we established a high-throughputin vitrobiochemical assay and used it to screen a library of over 35,000 small molecules. Five chemical series of inhibitors were initially identified from the screen, from which series 1 and 2 were selected for chemical optimization. Indicative of their mechanism of action, enzyme inhibition by these compounds was found to be sensitive to both the ATP concentration and substitution of the amino acid residue present at the “gatekeeper” position at the ATP-binding site of the enzyme. Medicinal chemistry efforts led to a series of PfCDPK1 inhibitors with 50% inhibitory concentrations (IC50s) below 10 nM against PfCDPK1 in a biochemical assay and 50% effective concentrations (EC50s) less than 100 nM for inhibition of parasite growthin vitro. Potent inhibition was combined with acceptable absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and equipotent inhibition ofPlasmodium vivaxCDPK1. However, we were unable to correlate biochemical inhibition with parasite growth inhibition for this series overall. Inhibition ofPlasmodium bergheiCDPK1 correlated well with PfCDPK1 inhibition, enabling progression of a set of compounds toin vivoevaluation in theP. bergheirodent model for malaria. These chemical series have potential for further development as inhibitors of CDPK1.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3