The amino-terminal one-third of pseudorabies virus glycoprotein gIII contains a functional attachment domain, but this domain is not required for the efficient penetration of Vero cells

Author:

Flynn S J1,Burgett B L1,Stein D S1,Wilkinson K S1,Ryan P1

Affiliation:

1. Department of Microbiology and Immunology, University of Tennessee, Memphis 38163.

Abstract

We have examined the attachment and penetration phenotypes of several glycoprotein gIII mutants of pseudorabies virus (PRV) and have identified the first one-third of gIII as a region that mediates efficient virus attachment to PK15 and Vero cells. This portion of gIII, amino acids 25 through 157 of the wild-type sequence, appeared to support attachment by binding to heparinlike molecules on cell surfaces. Virions containing the first one-third of gIII were sensitive to heparin competition and showed greatly reduced infectivity on cells treated with heparinase. PRV virions lacking the first one-third of the mature glycoprotein exhibited only residual binding to cells if challenged by vigorous washing with phosphate-buffered saline at 2 h postinfection at 4 degrees C. This residual binding was resistant to heparin competition, and strains lacking the first one-third of gIII were able to infect cells treated with heparinase as effectively as untreated cells. When we determined the penetration phenotypes for each strain, we found that gIII-mediated virus attachment was necessary for timely penetration of PK15 cells but remarkably was not required for efficient virus penetration of Vero cells. Moreover, wild-type PRV was actually prohibited from rapid penetration of Vero cells by a gIII-heparan sulfate interaction. Our results indicate that initial virus binding to heparan sulfate via glycoprotein gIII is not required for efficient PRV infection of all cell types and may in fact be detrimental in some instances.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3