Genotypic and Phenotypic Characterization of Human Immunodeficiency Virus Type 1 Variants Isolated from Patients Treated with the Protease Inhibitor Nelfinavir

Author:

Patick A. K.1,Duran M.2,Cao Y.2,Shugarts D.3,Keller M. R.1,Mazabel E.1,Knowles M.1,Chapman S.1,Kuritzkes D. R.3,Markowitz M.2

Affiliation:

1. Agouron Pharmaceuticals, Inc., San Diego, California 921211;

2. Aaron Diamond AIDS Research Center, New York, New York 100162; and

3. University of Colorado Health Sciences Center, Denver, Colorado 802623

Abstract

ABSTRACT Nelfinavir mesylate (formerly AG1343) is a potent and selective inhibitor of human immunodeficiency virus (HIV) protease approved for the treatment of individuals infected with HIV. Nucleotide sequence analysis of protease genes from plasma HIV type 1 (HIV-1) RNA revealed a unique aspartic acid (D)-to-asparagine (N) substitution at residue 30 (D30N) in 25 of 55 patients treated with nelfinavir for a median of 13 weeks. Although the appearance of D30N was occasionally associated with concurrent or sequential emergence of other changes (e.g., at residues 35, 36, 46, 71, 77, and 88), genotypic changes associated with phenotypic resistance to other protease inhibitors were not observed (e.g., at residues 48, 50, 82, and 84) or were only rarely observed (e.g., at residue 90). In phenotypic assays, viral isolates with high-level resistance to nelfinavir remained susceptible to indinavir, saquinavir, ritonavir, and amprenavir (formerly VX-478/141W94). Similar results were observed in phenotypic assays utilizing HIV-1 NL4-3, which contained the D30N substitution alone or in combination with substitutions at other residues (e.g., residues 46, 71, and 88). These data indicate that the initial pathway of resistance to nelfinavir is unique and suggest that individuals failing short courses of nelfinavir-containing regimens may respond to regimens containing other protease inhibitors.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 182 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3