Small-Molecule Inhibitors of the Budded-to-Hyphal-Form Transition in the Pathogenic Yeast Candida albicans

Author:

Toenjes Kurt A.1,Munsee Suzanne M.1,Ibrahim Ashraf S.2,Jeffrey Rachel1,Edwards John E.2,Johnson Douglas I.1

Affiliation:

1. Department of Microbiology and Molecular Genetics and Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont

2. Division of Infectious Diseases, St. John's Cardiovascular Research Center, Harbor-UCLA Research and Education Institute, Torrance, California

Abstract

ABSTRACT The pathogenic yeast Candida albicans can exist in multiple morphological states, including budded, pseudohyphal, and true hyphal forms. The ability to convert between the budded and hyphal forms, termed the budded-to-hyphal-form transition, is important for virulence and is regulated by multiple environmental and cellular signals. To identify inhibitors of this morphological transition, a microplate-based morphological assay was developed. With this assay, the known actin-inhibiting drugs latrunculin-A and jasplakinolide were shown to inhibit the transition in a dose-dependent and reversible manner. Five novel small molecules that reversibly inhibited the transition and hyphal elongation without affecting budded growth were identified. These molecules inhibited hyphal growth induced by Spider, Lee's, M199 pH 8, and 10% serum-containing media, with two molecules having a synergistic effect. The molecules also differentially affected the hyphal form-specific gene expression of HWP1 and endocytosis without disrupting the actin cytoskeleton or septin organization. Structural derivatives of one of the molecules were more effective inhibiters than the original molecule, while other derivatives had decreased efficacies. Several of the small molecules were able to reduce C. albicans -dependent damage to endothelial cells by inhibiting the budded-to-hyphal-form transition. These studies substantiated the effectiveness of the morphological assay and identified several novel molecules that, by virtue of their ability to inhibit the budded-to-hyphal-form transition, may be exploited as starting points for effective antifungal therapeutics in the future.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3