Hyperbaric Oxygen Reduces Aspergillus fumigatus Proliferation In Vitro and Influences In Vivo Disease Outcomes

Author:

Dhingra Sourabh1,Buckey Jay C.2,Cramer Robert A.1

Affiliation:

1. Geisel School of Medicine at Dartmouth, Department of Microbiology and Immunology, Hanover, New Hampshire, USA

2. Geisel School of Medicine at Dartmouth, Department of Medicine, Lebanon, New Hampshire, USA

Abstract

ABSTRACT Recent estimates suggest that more than 3 million people have chronic or invasive fungal infections, causing more than 600,000 deaths every year. Aspergillus fumigatus causes invasive pulmonary aspergillosis (IPA) in patients with compromised immune systems and is a primary contributor to increases in human fungal infections. Thus, the development of new clinical modalities as stand-alone or adjunctive therapy for improving IPA patient outcomes is critically needed. Here we tested the in vitro and in vivo impacts of hyperbaric oxygen (HBO) (100% oxygen, >1 atmosphere absolute [ATA]) on A. fumigatus proliferation and murine IPA outcomes. Our findings indicate that HBO reduces established fungal biofilm proliferation in vitro by over 50%. The effect of HBO under the treatment conditions was transient and fungistatic, with A. fumigatus metabolic activity rebounding within 6 h of HBO treatment being removed. In vivo , daily HBO provides a dose-dependent but modest improvement in murine IPA disease outcomes as measured by survival analysis. Intriguingly, no synergy was observed between subtherapeutic voriconazole or amphotericin B and HBO in vitro or in vivo with daily HBO dosing, though the loss of fungal superoxide dismutase genes enhanced HBO antifungal activity. Further studies are needed to optimize the HBO treatment regimen and better understand the effects of HBO on both the host and the pathogen during a pulmonary invasive fungal infection.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of General Medical Sciences

HHS | NIH | National Center for Advancing Translational Sciences

Burroughs Wellcome Fund

Cystic Fibrosis Foundation

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3