Role of Glutamate Synthase in Biofilm Formation by Bacillus subtilis

Author:

Kimura Tan,Kobayashi Kazuo

Abstract

ABSTRACT Bacillus subtilis forms robust biofilms in the presence of large amounts of carbon sources, such as glycerol. However, little is known about the importance of the metabolic systems, or the relationship between metabolic systems and regulatory systems, involved in biofilm formation. Glutamate synthase, encoded by gltAB, is an enzyme that converts 2-ketoglutarate (a tricarboxylic acid [TCA] cycle intermediate) and glutamine into glutamate, which is a general amino group donor in metabolism. Here, we show that a ΔgltA mutant exhibited early arrest of biofilm formation in complex medium containing glycerol. This phenotype was not due to glutamate auxotrophy. Consistent with its biofilm formation phenotype, the ΔgltA mutant exhibited an early decrease in expression of the epsA and tapA operons, which are responsible for production of biofilm matrix polymers. This resulted from decreased activity of their regulator, Spo0A, as evidenced by reduced expression of other Spo0A-regulated genes in the ΔgltA mutant. The ΔgltA mutation prevented biofilm formation only in the presence of large amounts of glycerol. Moreover, limited expression of citrate synthase (but not other TCA enzymes) restored biofilm-forming ability to the ΔgltA mutant. These results indicate that the ΔgltA mutant accumulates an inhibitory intermediate (citrate) in the TCA cycle in the presence of large amounts of glycerol. The ΔgltA mutant formed biofilms when excess iron was added to the medium. Taken together, the data suggest that accumulation of citrate ions by the ΔgltA mutant causes iron shortage due to chelation, which prevents activation of Spo0A and causes defective biofilm formation. IMPORTANCE Bacillus subtilis, a model organism for bacterial biofilm formation, forms robust biofilms in a medium-dependent manner. Although the regulatory network that controls biofilm formation has been well studied, the importance of the underlying metabolic systems remains to be elucidated. The present study demonstrates that a metabolic disorder in a well-conserved metabolic system causes accumulation of an inhibitory metabolic intermediate that prevents activation of the system that regulates biofilm formation. These findings increase our understanding of the coordination between cellular metabolic status and the regulatory networks governing biofilm formation.

Funder

MEXT | Japan Society for the Promotion of Science

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference77 articles.

1. Bacterial biofilms: from the natural environment to infectious diseases;Hall-Stoodley;Nat Rev Microbiol,2004

2. Biofilms: the matrix revisited;Branda;Trends Microbiol,2005

3. The biofilm matrix;Flemming;Nat Rev Microbiol,2010

4. Understanding biofilm resistance to antibacterial agents;Davies;Nat Rev Drug Discov,2003

5. Mechanisms of biofilm resistance to antimicrobial agents;Mah;Trends Microbiol,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3