Virus-Like Particle Vaccine Containing Hemagglutinin Confers Protection against 2009 H1N1 Pandemic Influenza

Author:

Hossain M. Jaber12,Bourgeois Melissa1,Quan Fu-Shi3,Lipatov Aleksandr S.1,Song Jae-Min34,Chen Li-Mei1,Compans Richard W.3,York Ian1,Kang Sang-Moo34,Donis Ruben O.1

Affiliation:

1. Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia

2. Battelle, Atlanta, Georgia 30333

3. Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia

4. Center for Inflammation, Immunity & Infection, Department of Biology, Georgia State University, Atlanta, Georgia 30303

Abstract

ABSTRACT Immunization of the world population before an influenza pandemic such as the 2009 H1N1 virus spreads globally is not possible with current vaccine production platforms. New influenza vaccine technologies, such as virus-like-particles (VLPs), offer a promising alternative. Here, we tested the immunogenicity and protective efficacy of a VLP vaccine containing hemagglutinin (HA) and M1 from the 2009 pandemic H1N1 influenza virus (H1N1pdm) in ferrets and compared intramuscular (i.m.) and intranasal (i.n.) routes of immunization. Vaccination of ferrets with VLPs containing the M1 and HA proteins from A/California/04/2009 (H1N1pdm) induced high antibody titers and conferred significant protection against virus challenge. VLP-vaccinated animals lost less weight, shed less virus in nasal washes, and had markedly lower virus titers in all organs tested than naïve controls. A single dose of VLPs, either i.m. or i.n., induced higher levels of antibody than did two doses of commercial split vaccine. Ferrets vaccinated with split vaccine were incompletely protected against challenge; these animals had lower virus titers in olfactory bulbs, tonsils, and intestines, but lost weight and shed virus in nasal washes to a similar extent as naïve controls. Challenge with heterologous A/Brisbane/59/07 (H1N1) virus revealed that the VLPs conferred minimal cross-protection to heterologous infection, as revealed by the lack of reduction in nasal wash and lung virus titers and slightly higher weight loss relative to controls. In summary, these experiments demonstrate the strong immunogenicity and protective efficacy of VLPs compared to the split vaccine and show that i.n. vaccination with VLPs has the potential for highly efficacious vaccination against influenza.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3