MtaR, a Regulator of Methionine Transport, Is Critical for Survival of Group B Streptococcus In Vivo

Author:

Shelver Daniel1,Rajagopal Lakshmi1,Harris Theresa O.1,Rubens Craig E.1

Affiliation:

1. Department of Pediatrics, Division of Infectious Disease, Childrens' Hospital and Regional Medical Center and University of Washington, Seattle, Washington 91805

Abstract

ABSTRACT The group B streptococcus (GBS) is an important human pathogen that infects newborns as well as adults. GBS also provides a model system for studying adaptation to different host environments due to its ability to survive in a variety of sites within the host. In this study, we have characterized a transcription factor, MtaR, that is essential for the ability of GBS to survive in vivo. An isogenic strain bearing a kanamycin insertion in mtaR was attenuated for survival in a neonatal-rat model of sepsis. The mtaR mutant grew poorly in human plasma, suggesting that its utilization of plasma-derived nutrients was inefficient. When an excess of exogenous methionine (200 μg/ml) was provided to the mtaR mutant, its growth rate in plasma was restored to that of the wild-type strain. The mtaR mutant grew poorly in chemically defined medium (CDM) prepared with methionine at a concentration similar to that of plasma (4 μg/ml) but was able to grow normally in CDM prepared with a high concentration of methionine (400 μg/ml). Both the wild-type strain and the mtaR mutant were incapable of growth in CDM lacking methionine, indicating that GBS cannot synthesize methionine de novo. When the abilities of the strains to incorporate radiolabeled methionine were compared, the mtaR mutant incorporated fivefold less methionine than the wild-type strain during a 10-min period. Collectively, the results from this study suggest that the ability to regulate expression of a methionine transport system is critical for GBS survival in vivo.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3