Abstract
The large T antigen of simian virus 40 (SV40) is a multifunctional protein that is essential in both the virus lytic cycle and the oncogenic transformation of cells by SV40. To investigate the role of the numerous biochemical and physiological activities of T antigen in the lytic and transformation processes, we have studied DNA replication-deficient, transformation-competent large T-antigen mutants. Here we describe the genetic and biochemical analyses of two such mutants, C2/SV40 and C11/SV40. The mutants were isolated by rescuing the integrated SV40 DNA from C2 and C11 cells (CV-1 cell lines transformed with UV-irradiated SV40). The mutant viral early regions were cloned into the plasmid vector pK1 to generate pC2 and pC11. The mutations that are responsible for the deficiency in viral DNA replication were localized by marker rescue. Subsequent DNA sequencing revealed point mutations that predict amino acid substitutions in the carboxyl third of the protein in both mutants. The pC2 mutation predicts the change of Lys----Arg at amino acid 516. pC11 has two mutations, one predicting a change of Pro----Ser at residue 522, and another predicting a Pro----Arg change at amino acid 549. The two C11 mutations were separated from each other to form two distinct viral genomes in pC11A and pC11B. pC2, pC11, pC11A, and pC11B are able to transform both primary and established rodent cell cultures. The C11 and C11A T antigens are defective in ATPase activity, suggesting that wild-type levels of ATPase activity are not necessary for the oncogenic transformation of cells by T antigen.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献