Modulation of luminescence operon expression by N-octanoyl-L-homoserine lactone in ainS mutants of Vibrio fischeri

Author:

Kuo A1,Callahan S M1,Dunlap P V1

Affiliation:

1. Biology Department, Woods Hole Oceanographic Institution, Massachusetts 02543, USA.

Abstract

Population density-dependent expression of luminescence in Vibrio fischeri is controlled by the autoinducer N-3-oxohexanoyl-L-homoserine lactone (autoinducer 1 [AI-1]), which via LuxR activates transcription of the lux operon (luxICDABEG, encoding the putative autoinducer synthase [LuxI] and the luminescence enzymes). We recently identified a novel V. fischeri locus, ainS, necessary for the synthesis of a second autoinducer, N-octanoyl-L-homoserine lactone (AI-2), which via LuxR can activate lux operon transcription in the absence of AI-1. To define the regulatory role of AI-2, a luxI ainS double mutant was constructed; in contrast to the parental strain and a luxI mutant, the luxI ainS mutant exhibited no induction of luminescence and produced no detectable luminescence autoinducer, demonstrating that V. fischeri makes no luminescence autoinducers other than those whose synthesis is directed by luxI and ainS. A mutant defective only in ainS exhibited accelerated luminescence induction compared with that of the parental strain, indicating that AI-2 functions in V. fischeri to delay luminescence induction. Consistent with that observation, the exogenous addition of AI-2 inhibited induction in a dose-dependent manner in V. fischeri and Escherichia coli carrying the lux genes. AI-2 did not mediate luxR negative autoregulation, alone or in the presence of AI-1, and inhibited luminescence induction in E. coli regardless of whether luxR was under the control of its native promoter or a foreign one. Increasing amounts of AI-1 overcame the inhibitory effect of AI-2, and equal activation of luminescence required 25- to 45-fold-more AI-2 than AI-1. We conclude that AI-2 inhibits lux operon transcription. The data are consistent with a model in which AI-2 competitively inhibits the association of AI-1 with LuxR, forming a complex with LuxR which has a markedly lower lux operon-inducing specific activity than that of AI-1-LuxR. AI-2 apparently functions in V. fischeri to suppress or delay induction at low and intermediate population densities.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3