Lysine-Specific Demethylase 1 Regulates the Embryonic Transcriptome and CoREST Stability

Author:

Foster Charles T.1,Dovey Oliver M.1,Lezina Larissa1,Luo Jin Li2,Gant Timothy W.2,Barlev Nick1,Bradley Allan3,Cowley Shaun M.1

Affiliation:

1. Department of Biochemistry, Henry Wellcome Building, Lancaster Road, University of Leicester, Leicester LE1 9HN, United Kingdom

2. Systems Toxicology Group, MRC Toxicology Unit, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, United Kingdom

3. Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom

Abstract

ABSTRACT Lysine-specific demethylase 1 (LSD1), which demethylates mono- and dimethylated histone H3-Lys4 as part of a complex including CoREST and histone deacetylases (HDACs), is essential for embryonic development in the mouse beyond embryonic day 6.5 (e6.5). To determine the role of LSD1 during this early period of embryogenesis, we have generated loss-of-function gene trap mice and conditional knockout embryonic stem (ES) cells. Analysis of postimplantation gene trap embryos revealed that LSD1 expression, and therefore function, is restricted to the epiblast. Conditional deletion of LSD1 in mouse ES cells, the in vitro counterpart of the epiblast, revealed a reduction in CoREST protein and associated HDAC activity, resulting in a global increase in histone H3-Lys56 acetylation, but not H3-Lys4 methylation. Despite this biochemical perturbation, ES cells with LSD1 deleted proliferate normally and retain stem cell characteristics. Loss of LSD1 causes the aberrant expression of 588 genes, including those coding for transcription factors with roles in anterior/posterior patterning and limb development, such as brachyury, Hoxb7, Hoxd8, and retinoic acid receptor γ (RARγ). The gene coding for brachyury, a key regulator of mesodermal differentiation, is a direct target gene of LSD1 and is overexpressed in e6.5 Lsd1 gene trap embryos. Thus, LSD1 regulates the expression and appropriate timing of key developmental regulators, as part of the LSD1/CoREST/HDAC complex, during early embryonic development.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3