Anti-CD14 Monoclonal Antibodies Inhibit the Production of Tumor Necrosis Factor Alpha and Interleukin-10 by Human Monocytes Stimulated with Killed and Live Haemophilus influenzae or Streptococcus pneumoniae Organisms

Author:

van Furth A. Marceline12,Verhard-Seijmonsbergen Els M.1,Langermans Jan A. M.13,van Dissel Jaap T.1,van Furth Ralph1

Affiliation:

1. Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden,1

2. Department of Pediatrics, Free University Hospital, 1007 MB Amsterdam,2 and

3. Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk,3 The Netherlands

Abstract

ABSTRACT In previous studies, we have shown that intact, heat-killed, gram-negative bacteria (GNB) and gram-positive bacteria (GPB) can stimulate the production of various proinflammatory and anti-inflammatory cytokines. The objective of the present study was to investigate whether the production of tumor necrosis factor alpha (TNF) and interleukin-10 (IL-10) by human monocytes stimulated by intact heat-killed or live Haemophilus influenzae or Streptococcus pneumoniae is mediated by CD14. Two anti-CD14 monoclonal antibodies (MAbs) were used to study the interaction between human monocytes and bacteria; lipopolysaccharide (LPS) was used to validate the effect of anti-CD14 MAb. MAb 18E12 decreased significantly TNF and IL-10 production upon stimulation with LPS or heat-killed bacteria and TNF production during stimulation by live bacteria. MAb My-4 decreased production of TNF and IL-10 by monocytes stimulated with LPS, IL-10 but not TNF production upon stimulation with heat-killed H. influenzae , and production of neither TNF nor IL-10 upon stimulation with S. pneumoniae . Together, these results led to the conclusion that CD14 is involved in the recognition and stimulation of human monocytes by intact GNB and GPB. Consequentially, the option for adjunctive treatment of severe infections with anti-CD14 MAb is postulated.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3