Discriminating between Varicella-Zoster Virus Vaccine and Wild-Type Strains by Loop-Mediated Isothermal Amplification

Author:

Higashimoto Yuki12,Ihira Masaru3,Ohta Akane4,Inoue Shigeki1,Usui Chie2,Asano Yoshizo42,Yoshikawa Tetsushi42

Affiliation:

1. Department of Clinical Immunology, Fujita Health University School of Health Sciences

2. Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Aichi, Japan

3. Department of Medical Information Technology, Fujita Health University College

4. 21st Century COE Research Center, Fujita Health University

Abstract

ABSTRACT The loop-mediated isothermal amplification (LAMP) method was developed to distinguish between the varicella-zoster virus (VZV) vaccine (vOka) strain and wild-type strains. Two single nucleotide polymorphisms (SNPs) (nucleotide [nt] 105705 for VR-1 VZV LAMP and nt 106262 for VR-2 VZV LAMP) located in the open reading frame 62 gene were selected as LAMP targets. Amplified vOka DNA demonstrated a typical ladder pattern; however, no LAMP product was detected in reactions performed with DNAs from other human herpesviruses by either VR-1 VZV LAMP or VR-2 VZV LAMP. This result was confirmed by a turbidity assay. The sensitivities of both VR-1 and VR-2 VZV LAMP determined by either the turbidity assay or agarose gel electrophoresis were 100 copies per reaction. To discriminate the vOka strain from wild-type strains, VR-1 and VR-2 VZV LAMP products were digested with the appropriate restriction enzymes (SacII for VR-1 LAMP and SmaΙ for VR-2 LAMP). The digested products were clearly different in the vOka strain and wild-type strains. To evaluate the utility of the LAMP methods for rapid differentiation, viral DNA (without DNA extraction) in swab samples was directly tested. Wild-type VZV DNA was detected in 20 swab samples by either VR-1 VZV LAMP or VR-2 VZV LAMP. Sequence analysis confirmed the expected SNPs in the LAMP products amplified from the vOka strain and the five wild-type strains.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3