Restriction and Modification of Bacteriophage S2 in Haemophilus influenzae

Author:

Gromkova Rosa1,Bendler John1,Goodgal Sol1

Affiliation:

1. Department of Microbiology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104

Abstract

The major conclusion from these studies is that variants of Haemophilus influenzae Rd which restrict and modify phage S2 are metastable and capable of giving rise to one another with high frequency. Nonrestrictive RdS cells segregate spontaneously to the restricting, modifying phenotype in about 5% of the progeny of a single clone. The restrictive cells derived from RdS revert to the nonrestrictive phenotype in 15 to 25% of the progeny of a single clone. These frequencies are not appreciably affected by treatment with acriflavine or ethidium bromide, compounds which affect plasmid stability, or by nitrosoguanidine, a powerful mutagen. The genetic locus for restriction and modification of bacteriophage S2 is found to have a chromosomal position between the biotin and proline loci. Restriction-modification of phage S2 has been shown to be a function of its deoxyribonucleic acid (DNA) in that transfection with S2 phage DNA or prophage DNA is subject to host restriction and modification. An enzyme preparation, which contains endodeoxyribonuclease but no appreciable exonuclease activity, from mutant H. influenzae com −10 did not restrict phage S2·RdS DNA or prophage DNA transfecting activity, indicating that this endodeoxyribonuclease is not responsible for phage restriction. A new restriction enzyme isolated from H. influenzae Rd was found to be the major enzyme involved in the restriction of bacteriophage S2. The enzyme inactivated the transfecting activity of unmodified phage DNA but did not attack modified phage DNA. Unlike endodeoxyribonuclease R, this enzyme requires adenosine triphosphate and S -adenosylmethionine.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3