Affiliation:
1. Jiangsu Province Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing, China
Abstract
Mixotrophs widely living in aquatic ecosystems possess unique ecological roles and strong environmental adaptability due to their plastic metabolic modes; however, little is known about their underlying resistance mechanism and bioremediation potential in response to environmental stresses. For the first time, this work investigated how mixotrophs respond to metal pollutants through physiological, population dynamics, and transcriptional regulation, and highlighted the unique underlying mechanism of mixotrophs to resist and remove heavy metal, thereby advancing our understanding of the potentials of mixotrophs in recovering metal-contaminated aquatic environments.
Funder
the Priority Academic Program Development of Jiangsu Higher Education Institutions
MOST | National Natural Science Foundation of China
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献