Affiliation:
1. Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
2. Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
Abstract
ABSTRACT
Plants employ RNA-directed DNA methylation (RdDM) and dimethylation of histone 3 lysine 9 (H3K9me2) to silence geminiviruses and transposable elements (TEs). We previously showed that canonical RdDM (Pol IV-RdDM) involving RNA polymerases IV and V (Pol IV and Pol V) is required for
Arabidopsis thaliana
to recover from infection with
Beet curly top virus
lacking a suppressor protein that inhibits methylation (BCTV
L2
−
). Recovery, which is characterized by reduced viral DNA levels and symptom remission, allows normal floral development. Here, we used formaldehyde-assisted isolation of regulatory elements (FAIRE) to confirm that >90% of BCTV
L2
−
chromatin is highly compacted during recovery, and a micrococcal nuclease-chromatin immunoprecipitation assay showed that this is largely due to increased nucleosome occupancy. Physical compaction correlated with augmented cytosine and H3K9 methylation and with reduced viral gene expression. We additionally demonstrated that these phenomena are dependent on Pol V and by extension the Pol IV-RdDM pathway. BCTV
L2
−
was also used to evaluate the impact of viral infection on host loci, including repressed retrotransposons
Ta3
and
Athila6A
. Remarkably, an unexpected Pol V-dependent hypersuppression of these TEs was observed, resulting in transcript levels even lower than those detected in uninfected plants. Hypersuppression is likely to be especially important for natural recovery from wild-type geminiviruses, as viral L2 and AL2 proteins cause ectopic TE expression. Thus, Pol IV-RdDM targets both viral and TE chromatin during recovery, simultaneously silencing the majority of viral genomes and maintaining host genome integrity by enforcing tighter control of TEs in future reproductive tissues.
IMPORTANCE
In plants, RdDM pathways use small RNAs to target cytosine and H3K9 methylation, thereby silencing DNA virus genomes and transposable elements (TEs). Further, Pol IV-RdDM involving Pol IV and Pol V is a key aspect of host defense that can lead to recovery from geminivirus infection. Recovery is characterized by reduced viral DNA levels and symptom remission and thus allows normal floral development. Studies described here demonstrate that the Pol V-dependent enhanced viral DNA and histone methylation observed during recovery result in increased chromatin compaction and suppressed gene expression. In addition, we show that TE-associated chromatin is also targeted for hypersuppression during recovery, such that TE transcripts are reduced below the already low levels seen in uninfected plants. Thus, Pol IV-RdDM at once silences the majority of viral genomes and enforces a tight control over TEs which might otherwise jeopardize genome integrity in future reproductive tissue.
Funder
HHS | National Institutes of Health
National Science Foundation
USDA | National Institute of Food and Agriculture
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献