Phosphorylation of the Human Papillomavirus Type 16 E1^E4 Protein at T57 by ERK Triggers a Structural Change That Enhances Keratin Binding and Protein Stability

Author:

Wang Qian1,Kennedy Alan1,Das Papia1,McIntosh Pauline B.1,Howell Steven A.2,Isaacson Erin R.1,Hinz Steven A.1,Davy Clare1,Doorbar John1

Affiliation:

1. Division of Virology

2. Division of Molecular Structure, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom

Abstract

ABSTRACT The E1^E4 protein of human papillomavirus type 16 (HPV16) causes cytokeratin reorganization in the middle and upper epithelial layers and is thought to contribute to multiple facets of the virus life cycle. Although little is known as to how HPV16 E1^E4 (16E1^E4) functions are controlled following the first expression of this protein, the finding that low-risk E1^E4 proteins can be phosphorylated in vivo suggests an important role for kinases. Here, we show that 16E1^E4 is phosphorylated by cyclin-dependent kinase 1 (CDK1) and CDK2, extracellular signal-regulated kinase (ERK), protein kinase A (PKA), and PKC α, with CDK1/2 serine 32 and ERK threonine 57 phosphorylations representing the two primary events seen in cells in cycle. Interestingly, T57 phosphorylation was found to trigger a structural change in the 16E1^E4 protein that compacts the central fold region, leading to an increase in 16E1^E4 stability and overall abundance in the cell. When compared to wild-type 16E1^E4, a T57D phosphomimic was found to have greatly enhanced keratin-binding ability and an ability to modulate the binding of the unphosphorylated form, with keratin binding protecting the T57-phosphorylated form of 16E1^E4 from proteasomal degradation. In HPV16 genome-containing organotypic rafts, the T57-phosphorylated form was specifically detected in the intermediate cell layers, where productive infection occurs, suggesting that T57 phosphorylation may have a functional role at this stage of the viral life cycle. Interestingly, coexpression with 16E5 and ERK activation enhanced T57 phosphorylation, suggesting that E1^E4 and E5 may work together in vivo. Our data suggest a model in which the expression of 16E5 from the major E1^E4-E5 mRNA promotes T57 phosphorylation of E1^E4 and keratin binding, with dephosphorylation occurring following the switch to late poly(A) usage. Other forms of E1^E4, with alternative functional roles, may then increase in prevalence in the upper layers of the epithelium.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3