Sequential Deletion of the Integrase (Gag-Pol) Carboxyl Terminus Reveals Distinct Phenotypic Classes of Defective HIV-1

Author:

Mohammed Kevin D.1,Topper Michael B.1,Muesing Mark A.1

Affiliation:

1. Aaron Diamond AIDS Research Center for the City of New York, 455 1st Avenue, New York, New York 10016

Abstract

ABSTRACT A requisite step in the life cycle of human immunodeficiency virus type 1 (HIV-1) is the insertion of the viral genome into that of the host cell, a process catalyzed by the 288-amino-acid (32-kDa) viral integrase (IN). IN recognizes and cleaves the ends of reverse-transcribed viral DNA and directs its insertion into the chromosomal DNA of the target cell. IN function, however, is not limited to integration, as the protein is required for other aspects of viral replication, including assembly, virion maturation, and reverse transcription. Previous studies demonstrated that IN is comprised of three domains: the N-terminal domain (NTD), catalytic core domain (CCD), and C-terminal domain (CTD). Whereas the CCD is mainly responsible for providing the structural framework for catalysis, the roles of the other two domains remain enigmatic. This study aimed to elucidate the primary and subsidiary roles that the CTD has in protein function. To this end, we generated and tested a nested set of IN C-terminal deletion mutants in measurable assays of virologic function. We discovered that removal of up to 15 residues (IN 273) resulted in incremental diminution of enzymatic function and infectivity and that removal of the next three residues resulted in a loss of infectivity. However, replication competency was surprisingly reestablished with one further truncation, corresponding to IN 269 and coinciding with partial restoration of integration activity, but it was lost permanently for all truncations extending N terminal to this position. Our analyses of these replication-competent and -incompetent truncation mutants suggest potential roles for the IN CTD in precursor protein processing, reverse transcription, integration, and IN multimerization.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3