Distinct Functions of the Two Specificity Determinants in Replication Initiation of Plasmids ColE2-P9 and ColE3-CA38

Author:

Aoki Kazuteru1,Shinohara Miki2,Itoh Tateo12

Affiliation:

1. Department of Biology, Faculty of Science, Shinshu University, Matsumoto, Nagano 390-8621

2. Department of Biology, Faculty of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Abstract

ABSTRACT The plasmid ColE2-P9 Rep protein specifically binds to the cognate replication origin to initiate DNA replication. The replicons of the plasmids ColE2-P9 and ColE3-CA38 are closely related, although the actions of the Rep proteins on the origins are specific to the plasmids. The previous chimera analysis identified two regions, regions A and B, in the Rep proteins and two sites, α and β, in the origins as specificity determinants and showed that when each component of the region A-site α pair and the region B-site β pair is derived from the same plasmid, plasmid DNA replication is efficient. It is also indicated that the replication specificity is mainly determined by region A and site α. By using an electrophoretic mobility shift assay, we demonstrated that region B and site β play a critical role for stable Rep protein-origin binding and, furthermore, that 284-Thr in this region of the ColE2 Rep protein and the corresponding 293-Trp of the ColE3 Rep protein mainly determine the Rep-origin binding specificity. On the other hand, region A and site α were involved in the efficient unwinding of several nucleotide residues around site α, although they were not involved in the stable binding of the Rep protein to the origin. Finally, we discussed how the action of the Rep protein on the origin involving these specificity determinants leads to the plasmid-specific replication initiation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3