Differences in fosfomycin resistance mechanisms between Pseudomonas aeruginosa and Enterobacterales

Author:

Zheng Dina1,Bergen Phillip J.2,Landersdorfer Cornelia B.2ORCID,Hirsch Elizabeth B.1ORCID

Affiliation:

1. University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA;

2. Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia

Abstract

Multidrug-resistant (MDR) Pseudomonas aeruginosa presents a serious threat to public health due to its widespread resistance to numerous antibiotics. P. aeruginosa commonly causes nosocomial infections including urinary tract infections (UTI) which have become increasingly difficult to treat. The lack of effective therapeutic agents has renewed interest in fosfomycin, an old drug discovered in the 1960s and approved prior to the rigorous standards now required for drug approval. Fosfomycin has a unique structure and mechanism of action, making it a favorable therapeutic alternative for MDR pathogens that are resistant to other classes of antibiotics. The absence of susceptibility breakpoints for fosfomycin against P. aeruginosa limits its clinical use and interpretation due to extrapolation of breakpoints established for Escherichia coli or Enterobacterales without supporting evidence. Furthermore, fosfomycin use and efficacy for treatment of P. aeruginosa is also limited by both inherent and acquired resistance mechanisms. This narrative review provides an update on currently identified resistance mechanisms to fosfomycin, with a focus on those mediated by P. aeruginosa such as peptidoglycan recycling enzymes, chromosomal Fos enzymes, and transporter mutation. Additional fosfomycin resistance mechanisms exhibited by Enterobacterales including mutations in transporters and associated regulators, plasmid mediated Fos enzymes, kinases, and murA modification, are also summarized and contrasted. These data highlight that different fosfomycin resistance mechanisms may be associated with elevated MIC values in P. aeruginosa compared to Enterobacterales, emphasizing that extrapolation of E. coli breakpoints to P. aeruginosa should be avoided.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3