Affiliation:
1. Department of Microbiology and Immunology, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, North Carolina 27103
Abstract
Amber mutants of T1 were grown on each of three donor strains which were identical except that they carried different suppressors: respectively,
supD, supE
, and
supB
. The efficiency with which the mutants were able to transduce was tested after growth on each donor. In general, it was found that functions which control the synthesis of phage DNA usually caused significant increases in the efficiency of transduction (EOT). A few mutants located in genes essential for head production caused significant decreases in EOT. The presence of a particular suppressor in a donor can cause noteworthy changes in the EOT by certain of the mutant phages. Amber mutations in gene 3 of T1 were extremely sensitive to the particular suppressor present in the donor, showing a 17-fold decrease in EOT compared with other mutants after growth in donors with the
supD
suppressor and a 75-fold increase after growth in
supE
donors. Increases in EOT by early genes of T1 do not seem to be caused by a lack of competition of bacterial DNA with phage DNA during packaging since, in most instances, infective phage were produced in relatively normal amounts compared with wild-type T1. Phage DNA synthesis and degradations of the host chromosome are closely coupled in T1 infections; we believe that increases in EOT by mutants of early functions are due to inefficient degradation of the host chromosome.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献