Author:
Hall Belinda S.,Wilkinson Shane R.
Abstract
ABSTRACTBenznidazole, a 2-nitroimidazole, is the front-line treatment used against American trypanosomiasis, a parasitic infection caused byTrypanosoma cruzi. Despite nearly 40 years of use, the trypanocidal activity of this prodrug is not fully understood. It has been proposed that benznidazole activation leads to the formation of reductive metabolites that can cause a series of deleterious effects, including DNA damage and thiol depletion. Here, we show that the key step in benznidazole activation involves an NADH-dependent trypanosomal type I nitroreductase. This catalyzes an oxygen-insensitive reaction with the interaction of enzyme, reductant, and prodrug occurring through a ping-pong mechanism. Liquid chromatography/mass spectrometry (LC/MS) analysis of the resultant metabolites identified 4,5-dihydro-4,5-dihydroxyimidazole as the major product of a reductive pathway proceeding through hydroxylamine and hydroxy intermediates. The breakdown of this product released the reactive dialdehyde glyoxal, which, in the presence of guanosine, generated guanosine-glyoxal adducts. These experiments indicate that the reduction of benznidazole by type I nitroreductase activity leads to the formation of highly reactive metabolites and that the expression of this enzyme is key to the trypanocidal properties displayed by the prodrug.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
191 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献