Mechanism of differential utilization of the his3 TR and TC TATA elements

Author:

Iyer V1,Struhl K1

Affiliation:

1. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.

Abstract

The yeast his3 promoter region contains two TATA elements, TC and TR, that are differentially utilized in constitutive his3 transcription and Gcn4-activated his3 transcription. TR contains the canonical TATAAA sequence, whereas TC is an extended region that lacks a conventional TATA sequence and does not support transcription in vitro. Surprisingly, differential his3 TATA-element utilization does not depend on specific properties of activator proteins but, rather, is determined by the overall level of his3 transcription. At low levels of transcription, the upstream TC is preferentially utilized, even though it is inherently a much weaker TATA element than TR. The TATA elements are utilized equally at intermediate levels, whereas TR is strongly preferred at high levels of transcription. This characteristic behavior can be recreated by replacing TC with moderately functional derivatives of a conventional TATA element, suggesting that TC is a collection of weak TATA elements. Analysis of promoters containing two biochemically defined TATA elements indicates that differential utilization occurs when the upstream TATA element is weaker than the downstream element. In other situations, the upstream TATA element is preferentially utilized in a manner that is independent of the overall level of transcription. Thus, in promoters containing multiple TATA elements, relative utilization not only depends on the quality and arrangement of the TATA elements but can vary with the overall level of transcriptional stimulation. We suggest that differential TATA utilization results from the combination of an intrinsic preference for the upstream element and functional saturation of weak TATA elements at low levels of transcriptional stimulation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference46 articles.

1. TBP mutants defective in activated transcription in vivo;Arndt K. M.;EMBO J.,1995

2. Mot1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism;Auble D. T.;Genes Dev.,1994

3. A yeast ARS-binding protein activates transcription synergistically in combination with other weak activating factors;Buchman A. R.;Mol. Cell. Biol.,1990

4. Five intermediate complexes in transcription initiation by RNA polymerase II;Buratowski S.;Cell,1989

5. An amino-terminal fragment of GAL4 binds DNA as a dimer;Carey M.;J. Mol. Biol.,1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3