The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain

Author:

Greco A1,Mariani C1,Miranda C1,Lupas A1,Pagliardini S1,Pomati M1,Pierotti M A1

Affiliation:

1. Division of Experimental Oncology A, Istituto Nazionale Tumori, Milan, Italy.

Abstract

Oncogenic rearrangements of the NTRK1 gene (also designated TRKA), encoding one of the receptors for the nerve growth factor, are frequently detected in thyroid carcinomas. Such rearrangements fuse the NTRK1 tyrosine kinase domain to 5'-end sequences belonging to different genes. In previously reported studies we have demonstrated that NTRK1 oncogenic activation involves two genes, TPM3 and TPR, both localized similarly to the receptor tyrosine kinase, on the q arm of chromosome 1. Here we report the characterization of a novel NTRK1-derived thyroid oncogene, named TRK-T3. A cDNA clone, capable of transforming activity, was isolated from a transformant cell line. Sequence analysis revealed that TRK-T3 contains 1,412 nucleotides of NTRK1 preceded by 598 nucleotides belonging to a novel gene that we have named TFG (TRK-fused gene). The TRK-T3 amino acid sequence displays, within the TFG region, a coiled-coil motif that could endow the oncoprotein with the capability to form complexes. The TRK-T3 oncogene encodes a 68-kDa cytoplasmic protein reacting with NTRK1-specific antibodies. By sedimentation gradient experiments the TRK-T3 oncoprotein was shown to form, in vivo, multimeric complexes, most likely trimers or tetramers. The TFG gene is ubiquitously expressed and is located on chromosome 3. The breakpoint producing the TRK-T3 oncogene occurs within exons of both the TFG gene and the NTRK1 gene and produces a chimeric exon that undergoes alternative splicing. Molecular analysis of the NTRK1 rearranged fragments indicated that the chromosomal rearrangement is reciprocal and balanced and involves loss of a few nucleotides of germ line sequences.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3