Six human RNA polymerase subunits functionally substitute for their yeast counterparts

Author:

McKune K1,Moore P A1,Hull M W1,Woychik N A1

Affiliation:

1. Roche Institute of Molecular Biology, Nutley, New Jersey 07110, USA.

Abstract

To assess functional relatedness of individual components of the eukaryotic transcription apparatus, three human subunits (hsRPB5, hsRPB8, and hsRPB10) were tested for their ability to support yeast cell growth in the absence of their essential yeast homologs. Two of the three subunits, hsRPB8 and hsRPB10, supported normal yeast cell growth at moderate temperatures. A fourth human subunit, hsRPB9, is a homolog of the nonessential yeast subunit RPB9. Yeast cells lacking RPB9 are unable to grow at high and low temperatures and are defective in mRNA start site selection. We tested the ability of hsRPB9 to correct the growth and start site selection defect seen in the absence of RPB9. Expression of hsRPB9 on a high-copy-number plasmid, but not a low-copy-number plasmid, restored growth at high temperatures. Recombinant human hsRPB9 was also able to completely correct the start site selection defect seen at the CYC1 promoter in vitro as effectively as the yeast RPB9 subunit. Immunoprecipitation of the cell extracts from yeast cells containing either of the human subunits that function in place of their yeast counterparts in vivo suggested that they assemble with the complete set of yeast RNA polymerase II subunits. Overall, a total of six of the seven human subunits tested previously or in this study are able to substitute for their yeast counterparts in vivo, underscoring the remarkable similarities between the transcriptional machineries of lower and higher eukaryotes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3