Cloning and characterization of FAD1, the structural gene for flavin adenine dinucleotide synthetase of Saccharomyces cerevisiae.

Author:

Wu M,Repetto B,Glerum D M,Tzagoloff A

Abstract

The FAD1 gene of Saccharomyces cerevisiae has been selected from a genomic library on the basis of its ability to partially correct the respiratory defect of pet mutants previously assigned to complementation group G178. Mutants in this group display a reduced level of flavin adenine dinucleotide (FAD) and an increased level of flavin mononucleotide (FMN) in mitochondria. The restoration of respiratory capability by FAD1 is shown to be due to extragenic suppression. FAD1 codes for an essential yeast protein, since disruption of the gene induces a lethal phenotype. The FAD1 product has been inferred to be yeast FAD synthetase, an enzyme that adenylates FMN to FAD. This conclusion is based on the following evidence. S. cerevisiae transformed with FAD1 on a multicopy plasmid displays an increase in FAD synthetase activity. This is also true when the gene is expressed in Escherichia coli. Lastly, the FAD1 product exhibits low but significant primary sequence similarity to sulfate adenyltransferase, which catalyzes a transfer reaction analogous to that of FAD synthetase. The lower mitochondrial concentration of FAD in G178 mutants is proposed to be caused by an inefficient exchange of external FAD for internal FMN. This is supported by the absence of FAD synthetase activity in yeast mitochondria and the presence of both extramitochondrial and mitochondrial riboflavin kinase, the preceding enzyme in the biosynthetic pathway. A lesion in mitochondrial import of FAD would account for the higher concentration of mitochondrial FMN in the mutant if the transport is catalyzed by an exchange carrier. The ability of FAD1 to suppress impaired transport of FAD is explained by mislocalization of the synthetase in cells harboring multiple copies of the gene. This mechanism of suppression is supported by the presence of mitochondrial FAD synthetase activity in S. cerevisiae transformed with FAD1 on a high-copy-number plasmid but not in mitochondrial of a wild-type strain.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3