Author:
Guo X,Zhang Y P,Mitchell D A,Denhardt D T,Chambers A F
Abstract
The role of RAS in transducing signals from an activated receptor into altered gene expression is becoming clear, though some links in the chain are still missing. Cells possessing activated RAS express higher levels of osteopontin (OPN), an alpha v beta 3 integrin-binding secreted phosphoprotein implicated in a number of developmental, physiological, and pathological processes. We report that in T24 H-ras-transformed NIH 3T3 cells enhanced transcription contributes to the increased expression of OPN. Transient transfection studies, DNA-protein binding assays, and methylation protection experiments have identified a novel ras-activated enhancer, distinct from known ras response elements, that appears responsible for part of the increase in OPN transcription in cells with an activated RAS. In electrophoretic mobility shift assays, the protein-binding motif GGAGGCAGG was found to be essential for the formation of several complexes, one of which (complex A) was generated at elevated levels by cell lines that are metastatic. Southwestern blotting and UV light cross-linking studies indicated the presence of several proteins able to interact with this sequence. The proteins that form these complexes have molecular masses estimated at approximately 16, 28, 32, 45, 80, and 100 kDa. Because the approximately 16-kDa protein was responsible for complex A formation, we have designated it MATF for metastasis-associated transcription factor. The GGANNNAGG motif is also found in some other promoters, suggesting that they may be similarly controlled by MATF.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献