The murine C'-terminally alternatively spliced form of p53 induces attenuated apoptosis in myeloid cells

Author:

Almog N1,Li R1,Peled A1,Schwartz D1,Wolkowicz R1,Goldfinger N1,Pei H1,Rotter V1

Affiliation:

1. Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.

Abstract

The onset of p53-dependent apoptosis results from the accumulation of damaged DNA. Recently, it was shown that the C' terminus of the p53 protein plays a central role in sensing damaged DNA. In our present study, we examined the role of the C' terminus in the induction of apoptosis. A temperature-sensitive (ts) mutant of the alternatively spliced form of p53 (p53AS-ts) and the ts mutant of the regularly spliced form (p53RS-ts) were used to generate series of stable clones with increasing amounts of p53 protein. Apoptotic patterns induced by either the regularly spliced p53 product (p53RS) or a C'-terminally alternatively spliced p53 product (p53AS) were compared. We found that although both forms of p53 induced apoptosis following expression of the wild-type protein conformation, the kinetics were different. Apoptosis induced by the p53AS protein was attenuated compared to that induced by p53RS. The delay in the manifestation of the apoptotic features following p53AS expression was in agreement with a delay in the regulation of the expression of apoptosis-related genes. The observation that p53 with an altered C' terminus is still capable of inducing apoptosis suggests that the actual onset of the apoptotic process most probably involves structural domains other than the C' terminus of the p53 molecule. However, the fact that the apoptotic activity mediated by the p53AS product was slower than that mediated by the p53RS product suggests that the C' terminus indeed exerts a certain control on the apoptotic activity of the p53 molecule.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3