p73 Function Is Inhibited by Tumor-Derived p53 Mutants in Mammalian Cells

Author:

Di Como Charles J.1,Gaiddon Christian1,Prives Carol1

Affiliation:

1. Department of Biological Sciences, Columbia University, New York, New York 10027

Abstract

ABSTRACT The p53 tumor suppressor protein, found mutated in over 50% of all human tumors, is a sequence-specific transcriptional activator. Recent studies have identified a p53 relative, termed p73. We were interested in determining the relative abilities of wild-type and mutant forms of p53 and p73α and -β isoforms to transactivate various p53-responsive promoters. We show that both p73α and p73β activate the transcription of reporters containing a number of p53-responsive promoters in the p53-null cell line H1299. However, a number of significant differences were observed between p53 and p73 and even between p73α and p73β. Additionally, a Saccharomyces cerevisiae -based reporter assay revealed a broad array of transcriptional transactivation abilities by both p73 isoforms at 37°C. Recent data have shown that p73 can associate with p53 by the yeast two-hybrid assay. When we examined complex formation in transfected mammalian cells, we found that p73α coprecipitates with mutant but not wild-type p53. Since many tumor-derived p53 mutants are capable of inhibiting transactivation by wild-type p53, we tested the effects of two representative hot-spot mutants (R175H and R248W) on p73. By cotransfecting p73α along with either p53 mutant and a p53-responsive reporter, we found that both R175H and R248W reduces the transcriptional activity of p73α. This decrease in transcriptional activity is correlated with the reduced ability of p73α to promote apoptosis in the presence of tumor-derived p53 mutants. Our data suggest the possibility that in some tumor cells, an outcome of the expression of mutant p53 protein may be to interfere with the endogenous p73 protein.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 306 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3