Essential Role of Interferon Regulatory Factor 3 in Direct Activation of RANTES Chemokine Transcription

Author:

Lin Rongtuan12,Heylbroeck Christophe13,Genin Pierre13,Pitha Paula M.4,Hiscott John132

Affiliation:

1. Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, 1 and

2. Medicine, 2 McGill University, Montreal, Canada H3T 1E2, and

3. Departments of Microbiology and Immunology 3 and

4. Oncology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland 212314

Abstract

ABSTRACT Localized and systemic cytokine production in virus-infected cells play an important role in the outcome of viral infection and pathogenicity. Activation of the interferon regulatory factors (IRF) in turn is a critical mediator of cytokine gene transcription. Recent studies have focused on the 55-kDa IRF-3 gene product as a direct transcriptional regulator of type 1 interferon (IFN-α and IFN-β) activation in response to virus infection. Virus infection induces phosphorylation of IRF-3 on specific C-terminal serine residues and permits cytoplasmic-to-nuclear translocation of IRF-3, activation of DNA binding and transactivation potential, and association with the CBP/p300 coactivator. We previously generated constitutively active [IRF-3(5D)] and dominant-negative forms of IRF-3 that control IFN-β and IFN-α gene expression. In an effort to characterize the range of immunoregulatory genes controlled by IRF-3, we now demonstrate that endogenous human RANTES gene transcription is directly induced in tetracycline-inducible IRF-3(5D)-expressing cells or paramyxovirus-infected cells. We also show that a dominant-negative IRF-3 mutant inhibits virus-induced expression of the RANTES promoter. Specific mutagenesis of overlapping ISRE-like sites located between nucleotides −123 and −96 in the RANTES promoter reduces virus-induced and IRF-3-dependent activation. These studies broaden the range of IRF-3 immunoregulatory target genes to include at least one member of the chemokine superfamily.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3