Affiliation:
1. Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, 1 and
2. Winship Cancer Center, Emory University, Atlanta, Georgia 303222
Abstract
ABSTRACT
The cytosolic factor Cif (cytochrome
c
-efflux inducing factor) was activated by the apoptosis inducers staurosporine and anti-Fas antibodies and rapidly induced the efflux of cytochrome
c
from purified human mitochondria. HL-60 cells that stably overexpressed a
bcl-2
cDNA transgene (Bcl-2:HL-60 cells) contained mitochondria and a cytosol that were resistant to exogenous Cif and that lacked detectable endogenous Cif activity, respectively. Therefore, Bcl-2 overexpression negated Cif activity and suggested that the requirement for Cif resides upstream of Bcl-2 on the apoptotic signal transduction pathway. The addition of purified caspase 3, caspase 7, or caspase 8 to the cytosolic extract from Bcl-2:HL-60 cells, however, restored Cif activity, demonstrating that the inhibition of Cif by Bcl-2 overexpression could be overcome by activated caspases. Moreover, the addition of purified caspases to cytosolic extracts prepared from parental HL-60 cells was also sufficient to cause Cif activation, suggesting that caspases might be required for Cif activation. Consistent with these observations, Fas-induced apoptosis in Jurkat cells resulted in caspase 8 activation and subsequently in activation of Cif. Finally, we demonstrate that the activation of Cif correlated with the activation of the Bcl-2 family member Bid by caspases and that Cif activity was selectively neutralized by anti-Bid antibodies. Taken together, these results indicate that Cif is identical to Bid and that it can be inhibited by Bcl-2 and activated by caspases. Thus, Cif (Bid) is an important biological regulator for the transduction of apoptotic signals.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献