Development of Bottom-Fermenting Saccharomyces Strains That Produce High SO 2 Levels, Using Integrated Metabolome and Transcriptome Analysis

Author:

Yoshida Satoshi1,Imoto Jun2,Minato Toshiko1,Oouchi Rie1,Sugihara Mao3,Imai Takeo3,Ishiguro Tatsuji1,Mizutani Satoru1,Tomita Masaru2,Soga Tomoyoshi2,Yoshimoto Hiroyuki1

Affiliation:

1. Central Laboratories for Frontier Technology, KIRIN Holdings Co., Ltd., 1-13-5 Fukuura Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan

2. Institute for Advanced Biosciences, Keio University, 246-2 Mizukami Kakuganji, Tsuruoka-shi, Yamagata 997-0052, Japan

3. Research Laboratories for Brewing, KIRIN Brewery Co., Ltd., 1-17-1 Namamugi Tsurumi-ku, Yokohama-shi, Kanagawa 230-8628, Japan

Abstract

ABSTRACT Sulfite plays an important role in beer flavor stability. Although breeding of bottom-fermenting Saccharomyces strains that produce high levels of SO 2 is desirable, it is complicated by the fact that undesirable H 2 S is produced as an intermediate in the same pathway. Here, we report the development of a high-level SO 2 -producing bottom-fermenting yeast strain by integrated metabolome and transcriptome analysis. This analysis revealed that O -acetylhomoserine (OAH) is the rate-limiting factor for the production of SO 2 and H 2 S. Appropriate genetic modifications were then introduced into a prototype strain to increase metabolic fluxes from aspartate to OAH and from sulfate to SO 2 , resulting in high SO 2 and low H 2 S production. Spontaneous mutants of an industrial strain that were resistant to both methionine and threonine analogs were then analyzed for similar metabolic fluxes. One promising mutant produced much higher levels of SO 2 than the parent but produced parental levels of H 2 S.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference34 articles.

1. Aharoni, A., C. H. R. de Vos, H. A. Verhoeven, C. A. Maliepaard, G. Kruppa, R. Bino, and D. B. Goodenowe. 2002. Nontargeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. Omics6:217-234.

2. Bilinski, C. A., I. Russell, and G. G. Stewart. 1987. Physiological requirements for induction of sporulation in lager yeast. J. Inst. Brew.92:216-219.

3. Cherest, H., and Y. Surdin-Kerjan. 1978. S-Adenosylmethionine requiring mutants in Saccharomyces cerevisiae: evidences for the existence of two methionine adenosyl transferases. Mol. Gen. Genet.163:153-167.

4. Donalies, U. E., and U. Stahl. 2002. Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1. Yeast19:475-484.

5. Duan, W., F. A. Roddick, V. J. Higgins, and P. J. Rogers. 2004. A parallel analysis of H2S and SO2 formation by brewing yeast in response to sulfur-containing amino acids and ammonium ions. J. Am. Soc. Brew. Chem.62:35-41.

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3