Stability of the Osmoregulated Promoter-DerivedproPmRNA Is Posttranscriptionally Regulated by RNase III in Escherichia coli

Author:

Lim Boram,Lee Kangseok

Abstract

ABSTRACTThe enzymatic activity ofEscherichia coliendo-RNase III determines the stability of a subgroup of mRNA species, includingbdm,betT, andproU, whose protein products are associated with the cellular response to osmotic stress. Here, we report that the stability ofproPmRNA, which encodes a transporter of osmoprotectants, is controlled by RNase III in response to osmotic stress. We observed that steady-state levels ofproPmRNA and ProP protein are inversely correlated with cellular RNase III activity and, in turn, affect the proline uptake capacity of the cell.In vitroandin vivoanalyses ofproPmRNA revealed RNase III cleavage sites in a stem-loop within the 5′ untranslated region present only inproPmRNA species synthesized from the osmoregulated P1 promoter. Introduction of nucleotide substitutions in the cleavage site identified inhibited the ribonucleolytic activity of RNase III onproPmRNA, increasing the steady-state levels and half-life of the mRNA. In addition, decreased RNase III activity coincided with a significant increase in both the half-life and abundance ofproPmRNA under hyperosmotic stress conditions. Analysis of the RNA bound to RNase III viain vivocross-linking and immunoprecipitation indicated that this phenomenon is related to the decreased RNA binding capacity of RNase III. Our findings suggest the existence of an RNase III-mediated osmoregulatory network that rapidly balances the expression levels of factors associated with the cellular response to osmotic stress inE. coli.IMPORTANCEOur results demonstrate that RNase III activity onproPmRNA degradation is downregulated inEscherichia colicells under osmotic stress. In addition, we show that the downregulation of RNase III activity is associated with decreased RNA binding capacity of RNase III under hyperosmotic conditions. In particular, our findings demonstrate a link between osmotic stress and RNase III activity, underscoring the growing importance of posttranscriptional regulation in modulating rapid physiological adjustment to environmental changes.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3