Host Range of the Conjugative Transfer System of IncP-9 Naphthalene-Catabolic Plasmid NAH7 and Characterization of Its oriT Region and Relaxase

Author:

Kishida Kouhei1,Inoue Kei1,Ohtsubo Yoshiyuki1,Nagata Yuji1,Tsuda Masataka1

Affiliation:

1. Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan

Abstract

ABSTRACT NAH7 and pWW0 from gammaproteobacterial Pseudomonas putida strains are IncP-9 conjugative plasmids that carry the genes for degradation of naphthalene and toluene, respectively. Although such genes on these plasmids are well-characterized, experimental investigation of their conjugation systems remains at a primitive level. To clarify these conjugation systems, in this study, we investigated the NAH7-encoded conjugation system by (i) analyzing the origin of its conjugative transfer ( oriT )-containing region and its relaxase, which specifically nicks within the oriT region for initiation of transfer, and (ii) comparing the conjugation systems between NAH7 and pWW0. The NAH7 oriT ( oriT N ) region was located within a 430-bp fragment, and the strand-specific nicking ( nic ) site and its upstream sequences that were important for efficient conjugation in the oriT N region were identified. Unlike many other relaxases, the NAH7 relaxase exhibited unique features in its ability to catalyze, in a conjugation-independent manner, the site-specific intramolecular recombination between two copies of the oriT N region, between two copies of the pWW0 oriT ( oriT W ) region (which is clearly different from the oriT N region), and between the oriT N and oriT W regions. The pWW0 relaxase, which is also clearly different from the NAH7 relaxase, was strongly suggested to have the ability to conjugatively and efficiently mobilize the oriT N -containing plasmid. Such a plasmid was, in the presence of the NAH7Δ nic derivative, conjugatively transferable to alphaproteobacterial and betaproteobacterial strains in which the NAH7 replication machinery is nonfunctional, indicating that the NAH7 conjugation system has a broader host range than its replication system. IMPORTANCE Various studies have strongly suggested an important contribution of conjugative transfer of catabolic plasmids to the rapid and wide dissemination of the plasmid-loaded degradation genes to microbial populations. Degradation genes on such plasmids are often loaded on transposons, which can be inserted into the genomes of the recipient bacterial strains where the transferred plasmids cannot replicate. The aim was to advance detailed molecular knowledge of the determinants of host range for plasmids. This aim is expected to be easily and comprehensively achieved using an experimental strategy in which the oriT region is connected with a plasmid that has a broad host range of replication. Using such a strategy in this study, we showed that (i) the NAH7 oriT -relaxase system has unique properties that are significantly different from other well-studied systems and (ii) the host range of the NAH7 conjugation system is broader than previously thought.

Funder

Kakenhi

The Institute for Fermentation, Osaka

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3