Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria

Author:

Chohnan S1,Furukawa H1,Fujio T1,Nishihara H1,Takamura Y1

Affiliation:

1. Department of Bioresource Sciences, School of Agriculture, Ibaraki University, Japan.

Abstract

Intracellular levels of three coenzyme A (CoA) molecular species, i.e., nonesterified CoA (CoASH), acetyl-CoA, and malonyl-CoA, in a variety of aerobic and facultatively anaerobic bacteria were analyzed by the acyl-CoA cycling method developed by us. It was demonstrated that there was an intrinsic difference between aerobes and facultative anaerobes in the changes in the size and composition of CoA pools. The CoA pools in the aerobic bacteria hardly changed and were significantly smaller than those of the facultatively anaerobic bacteria. On the other hand, in the facultatively anaerobic bacteria, the size and composition of the CoA pool drastically changed within minutes in response to the carbon and energy source provided. Acetyl-CoA was the major component of the CoA pool in the facultative anaerobes grown on sufficient glucose, although CoASH was dominant in the aerobes. Therefore, the acetyl-CoA/CoASH ratios in facultatively anaerobic bacteria were 10 times higher than those in aerobic bacteria. In Escherichia coli K-12 cells, the addition of reagents to inhibit the respiratory system led to a rapid decrease in the amount of acetyl-CoA with a concomitant increase in the amount of CoASH, whereas the addition of cerulenin, a specific inhibitor of fatty acid synthase, triggered the intracellular accumulation of malonyl-CoA. The acylation and deacylation of the three CoA molecular species coordinated with the energy-yielding systems and the restriction of the fatty acid-synthesizing system of cells. These data suggest that neither the accumulation of acetyl-CoA nor that of malonyl-CoA exerts negative feedback on pyruvate dehydrogenase and acetyl-CoA carboxylase, respectively.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3