Self-association of the erythroid transcription factor GATA-1 mediated by its zinc finger domains.

Author:

Crossley M,Merika M,Orkin S H

Abstract

GATA-1, the founding member of a distinctive family of transcription factors, is expressed predominantly in erythroid cells and participates in the expression of numerous erythroid cell-expressed genes. GATA-binding sites are found in the promoters and enhancers of globin and nonglobin erythroid genes as well as in the alpha- and beta-globin locus control regions. To elucidate how GATA-1 may function in a variety of regulatory contexts, we have examined its protein-protein interactions. Here we show that GATA-1 self-associates in solution and in whole-cell extracts and that the zinc finger region of the molecule is sufficient to mediate this interaction. This physical interaction can influence transcription, as GATA-1 self-association is able to recruit a transcriptionally active but DNA-binding-defective derivative of GATA-1 to promoter-bound GATA-1 and result in superactivation. Through in vitro studies with bacterially expressed glutathione S-transferase fusion proteins, we have localized the minimal domain required for GATA-1 self-association to 40 amino acid residues within the C-terminal zinc finger region. Finally, we have detected physical interaction of GATA-1 with other GATA family members (GATA-2 and GATA-3) also mediated through the zinc finger domain. These findings have broad implications for the involvement of GATA factors in transcriptional control. In particular, the interaction of GATA-1 with itself and with other transcription factors may facilitate its function at diverse promoters in erythroid cells and also serve to bring together, or stabilize, loops between distant regulatory elements, such as the globin locus control regions and downstream globin promoters. We suggest that the zinc finger region of GATA-1, and related proteins, is multifunctional and mediates not only DNA binding but also important protein-protein interactions.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3