Multiple independent inputs are required for activation of the p70 S6 kinase

Author:

Weng Q P1,Andrabi K1,Kozlowski M T1,Grove J R1,Avruch J1

Affiliation:

1. Medical Services and Diabetes Unit, Massachusetts General Hospital, Boston, USA.

Abstract

Previous studies have shown that the noncatalytic carboxy-terminal tail of the p70 S6 kinase (amino acids 422 to 525) contains an autoinhibitory pseudosubstrate domain that is phosphorylated in situ during activation and in vitro by mitogen-activated protein kinases. The present study shows that a recombinant p70 deleted of the carboxy-terminal tail (p70 delta CT104) nevertheless exhibits a basal and serum-stimulated 40S kinase activity and susceptibility to inhibition by wortmannin very similar to those of the parent, full-length p70 kinase. Carboxy-terminal deletion reduces the extent of maximal inhibition produced by rapamycin, from > 95% in the full-length p70 to 60 to 80% in p70 delta CT104, without altering the sensitivity to rapamycin inhibition (50% inhibitory concentration of 2 nM). Serum activation of p70 delta CT104, as with the parent, full-length p70, is accompanied by an increase in 32P content (about twofold) in situ and a slowing in electrophoretic mobility; both modifications are inhibited by pretreatment with wortmannin or rapamycin. 32P-peptide maps of p70 delta CT104 show multisite phosphorylation, and wortmannin and rapamycin appear to cause preferential dephosphorylation of the same subset of sites. Thus, it is likely that activation of the kinase requires phosphorylation of p70 at sites in addition to those previously identified in the carboxy-terminal tail. Evidence that the carboxy-terminal tail actually functions as a potent intramolecular inhibitor of kinase activity in situ is uncovered by deletion of a short acidic segment (amino acids 29 to 46) from the p70 amino-terminal noncatalytic region. Deletion of amino acids 29 to 46 causes a >95% inhibition of p70 activity despite continue phosphorylation of the carboxy-terminal tail in situ; additional deletion of the carboxy-terminal tail (yielding p70 delta 29-46/ delta CT104) increases activity 10-fold, to a level approaching that of p70 delta CT104. Deletion of residues 29 to 46 also abolishes completely the sensitivity of p70 to inhibition by rapamycin but does not alter the susceptibility to activation by serum of inhibition by wortmannin. Although the mechanisms underlying the effects of the delta 29-46 deletion are not known, they are not attributable to loss of the major in situ p70 phosphorylation site at Ser-40. Thus, activation of the p70 S6 kinase involves multiple, independent inputs directed at different domains of the p70 polypeptide. Disinhibition from the carboxy-terminal tail requires, in addition to its multisite phosphorylation, an activating input dependent on the presence of amino acids 29 to 46; this p70-activating input may be the same as that inhibited by rapamycin but is distinct from that arising from the wortmannin-inhibitable phosphatidylinositol 3-kinase. In addition, as exemplified by the rapamycin-resistant but mitogen- and wortmannin-sensitive p70 delta 29-46/ delta CT104 mutant, a further activating input, which probably involves site-specific phosphorylation in the segment between amino acids 46 to 421, is necessary.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3