Exploring strain-level diversity in the gut microbiome through mucin particle adhesion

Author:

Nishiyama Keita12ORCID,Murakami Ryuta3,Nakahata Masaki4,Zhou Binghui12,Hashikura Nanami3,Kaneko Hiroki3,Namai Fu12,Ikeda-Ohtsubo Wakako12,Xiao Jin-Zhong3,Kitazawa Haruki12,Odamaki Toshitaka3ORCID

Affiliation:

1. Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Japan

2. International Education and Research Center for Food Agricultural Immunology (CFAI), Tohoku University, Aoba-ku, Sendai, Japan

3. Next Generation Science Institute, Morinaga Milk Industry Co., Ltd, Zama, Kanagawa, Japan

4. Department of Macromolecular Science, Osaka University, Toyonaka, Osaka, Japan

Abstract

ABSTRACT Mucin glycoproteins are a significant source of carbon for the gut bacteria. Various gut microbial species possess diverse hydrolytic enzymes and catabolic pathways for breaking down mucin glycans, resulting in competition for the limited nutrients within the gut environment. Adherence to mucin glycans represents a crucial strategy used by gut microbes to access nutrient reservoirs. Understanding these properties is pivotal for comprehending the survival mechanisms of bacteria in the gastrointestinal tract. However, characterization of individual strains within the vast array of coexisting bacteria in the microbiome is challenging. To investigate this, we developed mucin-immobilized particles by immobilizing porcine gastric mucin (PGM) onto glass beads chemically modified with boronic acid. These PGM-immobilized particles were then anaerobically cultured with human fecal microbiota, and the bacteria adhering to PGM were isolated. Interestingly, the microbiome composition remained largely unchanged irrespective of PGM immobilization. Nonetheless, bacteria isolated from PGM-immobilized glass particles exhibited notably higher N -acetylgalactosaminidase activity compared to the control beads. Furthermore, Bacteroides strains isolated from PGM-immobilized glass particles displayed enhanced adhesive and metabolic properties to PGM. These findings underscore the utility of PGM particles in enriching and isolating specific microbes. Moreover, they highlight substantial differences in microbial properties at the strain level. We anticipate that PGM-immobilized particles will advance culture-based microbiome research, emphasizing the significance of strain-level characterization. IMPORTANCE Metabolism of mucin glycans by gut bacteria represents a crucial strategy for accessing nutrient reservoirs. The efficacy of mucin glycan utilization among gut bacteria hinges on the metabolic capabilities of individual strains, necessitating meticulous strain-level characterization. In this investigation, we used glass beads chemically immobilized with mucins to selectively enrich bacteria from fecal fermentation cultures, based on their superior adhesion to and metabolism of mucin glycoproteins. These findings lend support to the hypothesis that the physical interactions between bacteria and mucin glycoprotein components directly correlate with their capacity to utilize mucins as nutrient sources. Furthermore, our study implies that physical proximity may significantly influence bacterial nutrient acquisition within the ecosystem, facilitating gut bacteria’s access to carbohydrate components.

Funder

MEXT | Japan Society for the Promotion of Science

IFO

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3