Fermentation of lactose by yeast cells secreting recombinant fungal lactase

Author:

Ramakrishnan S1,Hartley B S1

Affiliation:

1. Center for Biotechnology, Imperial College of Science Technology and Medicine, South Kensington, London, United Kingdom.

Abstract

Strains of Saccharomyces cerevisiae transformed with a yeast multicopy expression vector carrying the cDNA for Aspergillus niger secretory beta-galactosidase under the control of ADH1 promoter and terminator were studied for their fermentation properties on lactose (V. Kumar, S. Ramakrishnan, T. T. Teeri, J. K. C. Knowles, and B. S. Hartley, Biotechnology 10:82-85, 1992). Lactose was hydrolyzed extracellularly into glucose and galactose, and both sugars were utilized simultaneously. Diauxic growth patterns were not observed. However, a typical biphasic growth was observed on a mixture of glucose and galactose under aerobic and anaerobic conditions with transformants of a haploid S. cerevisiae strain, GRF167. Polyploid distiller's yeast (Mauri) transformants were selected simply on the basis of the cloned gene expression on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) plates. Rapid and complete lactose hydrolysis and higher ethanol (0.31 g/g of sugar) and biomass (0.24 g/g of sugar) production were observed with distiller's yeast grown under aerobic conditions. A constant proportion (10%) of the population retained the plasmid throughout the fermentation period (48 h). Nearly theoretical yields of ethanol were obtained under anaerobic conditions on lactose, glucose, galactose, and whey permeate media. However, the rate and the amount of lactose hydrolysis were lower under anaerobic than aerobic conditions. All lactose-grown cells expressed partial galactokinase activity.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3