Author:
Anderson S J,Gonda M A,Rettenmier C W,Sherr C J
Abstract
The McDonough strain of feline sarcoma virus encodes a polyprotein that is cotranslationally glycosylated and proteolytically cleaved to yield transforming glycoproteins specified by the viral oncogene v-fms. The major form of the glycoprotein (gp120fms) contains endoglycosidase H-sensitive, N-linked oligosaccharide chains lacking fucose and sialic acid, characteristic of glycoproteins in the endoplasmic reticulum. Kinetic and steady-state measurements showed that most gp120fms molecules were not converted to mature forms containing complex carbohydrate moieties. Fixed-cell immunofluorescence confirmed that the majority of v-fms-coded antigens were internally sequestered in transformed cells. Dual-antibody fluorescence performed with antibodies to intermediate filaments (IFs) showed that the IFs of transformed cells were rearranged, and their distribution coincided with that of v-fms-coded antigens. No specific disruption of actin cables was observed. The v-fms gene products cofractionated with IFs isolated from virus-transformed cells and reassociated with IFs self-assembled in vitro. A minor population of v-fms-coded molecules (gp140fms) acquired endoglycosidase H-resistant, N-linked oligosaccharide chains containing fucose and sialic acid residues, characteristic of molecules processed in the Golgi complex. Some gp140fms molecules were detected at the plasma membrane and were radiolabeled by lactoperoxidase-catalyzed iodination of live transformed cells. We suggest that v-fms-coded molecules are translated as integral transmembrane glycoproteins, most of which are inhibited in transport through the Golgi complex to the plasma membrane.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献