Involvement of retrovirus reverse transcriptase-associated RNase H in the initiation of strong-stop (+) DNA synthesis and the generation of the long terminal repeat

Author:

Resnick R,Omer C A,Faras A J

Abstract

Reconstructed enzymatic reactions containing purified reverse transcriptase and defined analog substrates which mimic those purported to be natural substances for reverse transcription in vivo were employed to delineate the mechanism of strong-stop (+) DNA synthesis. Our analysis of this system has indicated that strong-stop (+) DNA synthesis is initiated after the introduction of a nick in the viral RNA genome between a polypurine sequence and an inverted repeat that represents the end of the long terminal repeat. Since inhibitors of the reverse transcriptase-associated RNase H activity prevent the introduction of the nick and the synthesis of strong-stop (+) DNA synthesis, it appears that this particular reverse transcriptase-associated enzymatic activity is responsible for the initiation of strong-stop (+) DNA. Our data also indicated that the RNase H activity creates a second nick in the viral RNA genome 11 nucleotides upstream from the strong-stop (+) DNA initiation site since the strong-stop (+) DNA synthesized in these reactions is covalently linked to an oligoribonucleotide 11 residues in length. Nucleotide sequence analysis of the oligoribonucleotide primer molecule indicated that a single homogenous oligomer was associated with strong-stop (+) DNA exhibiting the sequence rArGrGrGrArGrGrGrGrGrA. The oligoribonucleotide primer can be removed from strong-stop (+) DNA by the purified reverse transcriptase, which creates a nick at the junction between the primer and strong-stop (+) DNA. These data demonstrate that the initiation of strong-stop (+) DNA synthesis is mediated by RNase H and that the site of initiation is exactly at the end of the long terminal repeat, providing evidence for yet another function of this reverse transcriptase-associated enzymatic activity in the synthesis of retrovirus DNA.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3