Involvement of a Salmonella Genomic Island 1 Gene in the Rumen Protozoan-Mediated Enhancement of Invasion for Multiple-Antibiotic-Resistant Salmonella enterica Serovar Typhimurium

Author:

Carlson Steve A.1,Sharma Vijay K.1,McCuddin Zoe P.1,Rasmussen Mark A.1,Franklin Sharon K.1

Affiliation:

1. Pre-harvest Food Safety and Enteric Disease Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, Iowa 50010

Abstract

ABSTRACT Multiple-antibiotic-resistant Salmonella enterica serotype Typhimurium is a food-borne pathogen that may be more virulent than related strains lacking the multiresistance phenotype. Salmonella enterica serotype Typhimurium phage type DT104 is the most prevalent of these multiresistant/hypervirulent strains. Multiresistance in DT104 is conferred by an integron structure, designated Salmonella genomic island 1 (SGI1), while we recently demonstrated DT104 hyperinvasion mediated by rumen protozoa (RPz) that are normal flora of cattle. Hyperinvasion was also observed in other Salmonella strains, i.e., other S. enterica serovar Typhimurium phage types and other S. enterica serovars, like S. enterica serovar Infantis, possessing SGI1, while DT104 strains lacking SGI1 were not hyperinvasive. Herein we attempted to identify SGI1 genes involved in the RPz-mediated hyperinvasion of Salmonella strains bearing SGI1. Transposon mutagenesis, coupled with a novel reporter system, revealed the involvement of an SGI1 gene previously designated SO13. Disruption of SO13 expression led to an abrogation of hyperinvasion as assessed by tissue culture invasion assays and by bovine challenge experiments. However, hyperinvasion was not observed in non-SGI1-bearing strains of Salmonella engineered to express SO13. That is, SO13 and another SGI1 gene(s) may coordinately upregulate invasion in DT104 exposed to RPz.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3