Direct Ex Vivo Analyses of HLA-DR1 Transgenic Mice Reveal an Exceptionally Broad Pattern of Immunodominance in the Primary HLA-DR1-Restricted CD4 T-Cell Response to Influenza Virus Hemagglutinin

Author:

Richards Katherine A.1,Chaves Francisco A.1,Krafcik Frederick R.1,Topham David J.1,Lazarski Christopher A.1,Sant Andrea J.1

Affiliation:

1. David H. Smith Center for Vaccine Biology and Immunology, Aab Institute, and Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642

Abstract

ABSTRACT The recent threat of an avian influenza pandemic has generated significant interest in enhancing our understanding of the events that dictate protective immunity to influenza and in generating vaccines that can induce heterosubtypic immunity. Although antigen-specific CD4 T cells are known to play a key role in protective immunity to influenza through the provision of help to B cells and CD8 T cells, little is known about the specificity and diversity of CD4 T cells elicited after infection, particularly those elicited in humans. In this study, we used HLA-DR transgenic mice to directly and comprehensively identify the specificities of hemagglutinin (HA)-specific CD4 T cells restricted to a human class II molecule that were elicited following intranasal infection with a strain of influenza virus that has been endemic in U.S. human populations for the last decade. Our results reveal a surprising degree of diversity among influenza virus-specific CD4 T cells. As many as 30 different peptides, spanning the entire HA protein, were recognized by CD4 T cells, including epitopes genetically conserved among H1, H2, and H5 influenza A viruses. We also compared three widely used major histocompatibility class II algorithms to predict HLA-DR binding peptides and found these as yet inadequate for identifying influenza virus-derived epitopes. The results of these studies offer key insights into the spectrum of peptides recognized by HLA-DR-restricted CD4 T cells that may be the focus of immune responses to infection or to experimental or clinical vaccines in humans.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3