The Gamma Interferon (IFN-γ) Mimetic Peptide IFN-γ(95-133) Prevents Encephalomyocarditis Virus Infection both in Tissue Culture and in Mice

Author:

Mujtaba Mustafa G.12,Patel Chintak B.12,Patel Ravi A.12,Flowers Lawrence O.12,Burkhart Marjorie A.12,Waiboci Lilian W.12,Martin James12,Haider Mohammad I.12,Ahmed Chulbul M.12,Johnson Howard M.12

Affiliation:

1. Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611

2. Department of Physical Sciences and Mathematics, Florida Gulf Coast University, Fort Myers, Florida 33965

Abstract

ABSTRACT We have demonstrated previously that the C-terminal gamma interferon (IFN-γ) mimetic peptide consisting of residues 95 to 133 [IFN-γ(95-133)], which contains the crucial IFN-γ nuclear localization sequence (NLS), has antiviral activity in tissue culture. Here we evaluate the efficacy of this peptide and its derivatives first in vitro and then in an animal model of lethal viral infection with the encephalomyocarditis (EMC) virus. Deletion of the NLS region from the IFN-γ mimetic peptide IFN-γ(95-133) resulted in loss of antiviral activity. However, the NLS region does not have antiviral activity in itself. Replacing the NLS region of IFN-γ(95-133) with the NLS region of the simian virus 40 large T antigen retains the antiviral activity in tissue culture. IFN-γ(95-133) prevented EMC virus-induced lethality in mice in a dose-dependent manner compared to controls. Mice treated with IFN-γ(95-133) had no or low EMC virus titers in their internal organs, whereas control mice had consistently high viral titers, especially in the heart tissues. Injection of B8R protein, which is encoded by poxviruses as a defense mechanism to neutralize host IFN-γ, did not inhibit IFN-γ(95-133) protection against a lethal dose of EMC virus, whereas mice treated with rat IFN-γ were not protected. The data presented here show that the IFN-γ mimetic peptide IFN-γ(95-133) prevents EMC virus infection in vivo and in vitro and may have potential against other lethal viruses, such as the smallpox virus, which encodes the B8R protein.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3