Improvement of NADPH-Dependent Bioconversion by Transcriptome-Based Molecular Breeding

Author:

Hibi Makoto1,Yukitomo Hiromi1,Ito Mikito1,Mori Hideo1

Affiliation:

1. Biofrontier Laboratories, Kyowa Hakko Kogyo Co. Ltd., 3-6-6 Asahimachi, Machida, Tokyo 194-8533, Japan

Abstract

ABSTRACT Transcriptome data for a xylitol-producing recombinant Escherichia coli were obtained and used to tune up its productivity. Structural genes of NADPH-dependent d -xylose reductase and d -xylose permease were inserted into an Escherichia coli chromosome to construct a recombinant strain producing xylitol from d -xylose for use as a model system for NADPH-dependent bioconversion. Transcriptome analysis of xylitol-producing and nonproducing conditions for the recombinant revealed that xylitol production down-regulated 56 genes. These genes were then selected as candidate factors for suppression of the NADPH supply and were disrupted to validate their functions. Of the gene disruptants, that resulting from the deletion of yhbC showed the best bioconversion rate. Also, the deletion accelerated cell growth during log phase. The features of the mutant could be maintained in jar fermenter-scale production of xylitol. Thus, our novel molecular host strain breeding method using transcriptome analysis was fully effective and could be applied to improving various industrial strains.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3