Isolation and characterization of autolysis-defective mutants of Staphylococcus aureus created by Tn917-lacZ mutagenesis

Author:

Mani N1,Tobin P1,Jayaswal R K1

Affiliation:

1. Department of Biological Sciences, Illinois State University, Normal 61761-6901.

Abstract

Two autolysis-defective mutants (Lyt-1 and Lyt-2) of Staphylococcus aureus have been isolated by transposon Tn917-lacZ mutagenesis. The mutants exhibited normal growth rate, cell division, cell size, and adaptive responses to environmental changes. No autolytic activities were detected in a crude autolytic enzyme preparation from the Lyt- mutants. The rate of autolysis of whole cells and cell walls in the mutants were negligible, but mutant cell wall preparations were degraded by crude enzyme preparations from the wild-type strain. Zymographic analyses of enzyme extracts from the mutants showed a single autolytic enzyme band, compared with more than 10 autolytic enzyme bands from the parent strain. Analyses of intracellular and exoprotein fractions gave results similar to those in experiments with total-cell extracts. Southern blot analysis indicated the insertion of a single copy of the transposon into the chromosome of Lyt mutants. Isogenic Lyt mutants constructed by phage phi 11 transduction showed similar phenotypes. Because both Lyt- mutants had Tn917-lacZ inserted in the appropriate orientation, it was possible to determine gene activity under various conditions by measuring beta-galactosidase activity. The gene activity was found to be induced by low pH, low temperature, and high sucrose and high sodium chloride concentrations. From these data, we propose that the mutation lies in either a master regulatory gene or a structural gene which is responsible for the synthesis or processing of a majority of the autolytic enzyme bands.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3